

# **MAS6240E**

# **Piezo Driver with Multi-Mode Charge Pump**

- Both Single Ended and Differential Output
- Three-Step Volume Adjusting
- Up to 18Vpp Output from 3V and 30Vpp from 5V Supply
- One Wire Audio & Shutdown
   Control
- Solution without Inductors
- Low External Part Count
- MAS6240E2 with 0.125 MHz Switching Frequency for reduced current consumption

# DESCRIPTION

MAS6240 is a piezo driver device that can drive outputs up to 18Vpp from 3V supply and up to 30Vpp from 5V supply. An internal three-mode charge pump generates boosted supply voltage for piezo driver. For adjusting the piezo element sound volume, the charge pump can operate in either of a 1x, 2x or 3x mode. In 1x mode the output voltage is same to the input voltage, in 2x or 3x mode the input voltage is boosted up accordingly 2 or 3 times. Charge pump mode is selected by control pins EN1 and EN2 (see Table 2 on page 3).

MAS6240 is an easy and low-cost solution for piezo driver, since only 4 small value capacitors are needed in addition to sound element - the use of inductors can be avoided. The inductorless design also causes significantly less disturbance to the surrounding circuits making it an ideal choice for sensitive designs.

Control logic is switching the charge pump on at first rising signal of digital input (DIN) pin. The piezo driver

# FEATURES

### Piezo Driver & Multi-Mode Charge Pump

- Thin QFN 2x2 and 3x3 12ld packages
- Three-Step Volume Adjusting
- Both Single Ended and Differential Output
- Up to 18Vpp Output from 3V Supply and up to 30Vpp from 5V Supply
- One Wire Audio & Shutdown Control
- Low External Part Count
- Inductorless low EMI solution
- MAS6240E1 is direct replacement for older

MAS6240C2 and MAS6240E2 for MAS6240D3

is enabled at a second rising edge of a pulse at DIN and the signal is transferred to piezo output VO1. The same signal is inverted into output VO2 for using differential output. The charge pump and piezo driver disable signal will be generated while the signal at DIN has been at low at least for 25ms (typ 16ms). When disabled the piezo driver outputs VO1 and VO2 are pulled to GND.

Continuous logic high level at DIN input causes the charge pump to be turned ON but leaves the piezo driver disabled.

In "disabled" mode (DIN has been low for 15ms typically) all functional blocks are switched off to achieve the quiescent current less than  $0.25\mu$ A. VOUT voltage still remains near to VIN level.

- APPLICATIONS
- Piezo Buzzers
- Wrist Watches
- Alarm Clocks
- Handheld GPS devices
- PDAs
- Portable Device with Sound Feature
- White Goods



All voltages with respect to ground

### **ABSOLUTE MAXIMUM RATINGS**

|                                 |                          |                                       | All vol   | tages with respe | ct to ground. |
|---------------------------------|--------------------------|---------------------------------------|-----------|------------------|---------------|
| Parameter                       | Symbol                   | Conditions                            | Min       | Max              | Unit          |
| Supply Voltage                  | VIN                      |                                       | -0.3      | 6                | V             |
| Outputs and Flying              | VOUT                     |                                       | VIN - 0.3 | 20               | V             |
| Capacitors Pins Voltages        | CP2, VO1,<br>VO2         |                                       | -0.3      | 20               | V             |
|                                 | CP1, CN2                 |                                       | -0.3      | 13               | V             |
| Voltage Range for Input<br>Pins | DIN,<br>EN1, EN2,<br>CN1 |                                       | -0.3      | VIN + 0.3        | V             |
| Storage Temperature             |                          |                                       | -55       | +150             | °C            |
| ESD Rating                      | V <sub>HBM</sub>         | Human Body Model (HBM) <sup>(1)</sup> |           | ±1               | kV            |
|                                 | Vcdm                     | Charged Device Model (2)              |           | ±1               | kV            |

Note: Stresses beyond the values listed may cause a permanent damage to the device. The device may not operate under these conditions, but it will not be destroyed. Note 1: JEDEC document JEP155 states that 500V HBM allows safe manufacturing with a standard ESD control process. Note 2: JEDEC document JEP157 states that 250V CDM allows safe manufacturing with a standard ESD control process.

# **RECOMMENDED OPERATING CONDITIONS**

|                                   |        |            | AI  | i voltages with | respect to | ground. |
|-----------------------------------|--------|------------|-----|-----------------|------------|---------|
| Parameter                         | Symbol | Conditions | Min | Тур             | Max        | Unit    |
| Operating Junction<br>Temperature | TJ     |            | -40 |                 | +125       | °C      |
| Operating Ambient<br>Temperature  | TA     |            | -40 | +27             | +85        | °C      |
| Operating Supply Voltage          | Vin    |            | 2.2 | 3.0             | 5.5        | V       |



### **ELECTRICAL CHARACTERISTICS**

 $T_A = -40^{\circ}C$  to +85°C, typical values at  $T_A = 27^{\circ}C$ ,  $V_{IN} = 3.0$  V,  $C_1 = 0.1$  µF,  $C_2 = 0.1$  µF,  $C_{OUT} = 0.1$  µF,  $C_{IN} = 1.0$  µF,  $C_{piezo} = 15$  nF,

| Parameter                | Symbol          | Conditions                                                          | t DIN=4kH | Тур  | Max      | Unit   |
|--------------------------|-----------------|---------------------------------------------------------------------|-----------|------|----------|--------|
| Output Voltage           | VOUT            | VOUT pin voltage towards ground                                     |           |      |          |        |
|                          |                 | at VIN = 3V, load 0…5mA                                             |           |      |          |        |
|                          |                 | 1x Mode                                                             | 2.8       |      | 3        | V      |
|                          |                 | 2x Mode                                                             | 5.2       |      | 6        |        |
|                          |                 | 3x Mode                                                             | 7.2       |      | 9        |        |
| Shutdown Current         | I <sub>SD</sub> | DIN = 0V, <b>Note 1</b>                                             |           | 7    | 250      | nA     |
| Internal Switching       | Fosc            | MAS6240E1                                                           | 0.7       | 1    | 1.4      | MHz    |
| Frequency (Charge Pump)  |                 | MAS6240E2                                                           | 87        | 125  | 175      | kHz    |
| Current Consumption      | Icc             | Charge Pump (no load):                                              |           |      |          |        |
|                          |                 | MAS6240E1                                                           |           |      | 100      |        |
|                          |                 | 1x Mode                                                             |           | 55   | 100      | μA     |
|                          |                 | 2x Mode                                                             |           | 340  | 700      |        |
|                          |                 | 3x Mode                                                             |           | 640  | 1400     |        |
|                          |                 | MAS6240E2                                                           |           |      | <u> </u> |        |
|                          |                 | 1x Mode                                                             |           | 55   | 100      |        |
|                          |                 | 2x Mode                                                             |           | 160  | 300      |        |
|                          |                 | 3x Mode                                                             | ļ         | 250  | 700      |        |
|                          |                 | Single ended application                                            |           |      |          |        |
|                          |                 | (C <sub>piezo</sub> = 15nF; f=4kHz):                                |           |      |          |        |
|                          |                 | MAS6240E1                                                           |           |      |          |        |
|                          |                 | 1x Mode                                                             |           | 0.25 |          | mA     |
|                          |                 | 2x Mode                                                             |           | 1.15 |          |        |
|                          |                 | 3x Mode                                                             |           | 2.44 |          |        |
|                          |                 | MAS6240E2                                                           |           |      |          |        |
|                          |                 | 1x Mode                                                             |           | 0.25 |          |        |
|                          |                 | 2x Mode                                                             |           | 0.95 |          |        |
|                          |                 | 3x Mode                                                             |           | 2.05 |          |        |
|                          |                 | Differential application                                            |           |      |          |        |
|                          |                 | (C <sub>piezo</sub> = 15nF; f=4kHz):                                |           |      |          |        |
|                          |                 | MAS6240E1                                                           |           |      |          |        |
|                          |                 | 1x Mode                                                             |           | 0.8  |          | mA     |
|                          |                 | 2x Mode                                                             |           | 3.5  |          |        |
|                          |                 | 3x Mode                                                             |           | 7.6  |          |        |
|                          |                 | MAS6240E2                                                           |           | 7.0  |          |        |
|                          |                 | 1x Mode                                                             |           | 0.8  |          |        |
|                          |                 | 2x Mode                                                             |           | 3.3  |          |        |
|                          |                 | 3x Mode                                                             |           | 7.3  |          |        |
| Signal Frequency         | FAUDIO          |                                                                     | 0.2       | 4    | 8        | kHz    |
| /OUT Turn-ON Time        | ton             | 2x Mode                                                             | 1         | 30   | 200      | μs     |
| From DIN signal HIGH to  |                 | 3x Mode                                                             |           | 60   | 300      | ""     |
| 90% VOUT steady state)   |                 |                                                                     |           |      |          |        |
| Shut Down delay          | toff            | Time before device shutdown after                                   | 11        | 16   | 23       | ms     |
| · · · · - <b>/ - · j</b> |                 | DIN signal goes to LOW                                              |           |      | _        |        |
| Control Input Threshold  | VIH             | EN1, EN2, DIN pins                                                  | 1.6       |      |          | V      |
|                          | VIL             |                                                                     |           |      | 0.55     | v      |
| Control Input Current    |                 | $V_{\text{DIN}} = 3V$ , (900k $\Omega$ pull down)                   |           | 3.4  | 7        | μA     |
| control input our one    |                 | $V_{\text{DIN}} = 3V$ , (900K22 pull down)<br>$V_{\text{DIN}} = 0V$ |           | 0.4  | 1        | μΑ     |
|                          |                 | $V_{\text{DIN}} = 3V$                                               | 1         |      | '        | μ μ/ ٦ |
|                          | 1               |                                                                     |           | 24   | 7        |        |
|                          |                 | $V_{\text{EN1,EN2}} = 3V$ , (900k $\Omega$ pull down)               |           | 3.4  |          | μA     |
|                          | l <sub>IL</sub> | $V_{\text{EN1,EN2}} = 0V$                                           |           | 0    | 1        | μA     |
|                          | 1.              | $V_{\text{DIN}} = 0V$ , <b>Note 2</b>                               |           |      |          | .      |
|                          | Іін             | $V_{EN1,EN2} = 3V$                                                  |           | 0    | 1        | μA     |
|                          | IIL .           | $V_{EN1,EN2} = 0V$                                                  | 1         | 0    | 1        | μA     |

Note 1: DIN has been low at least 25 ms.

**Note 2:** EN1 and EN2 pins are at high-Z state while V<sub>DIN</sub>=0V.



#### **BLOCK AND APPLICATION DIAGRAM**

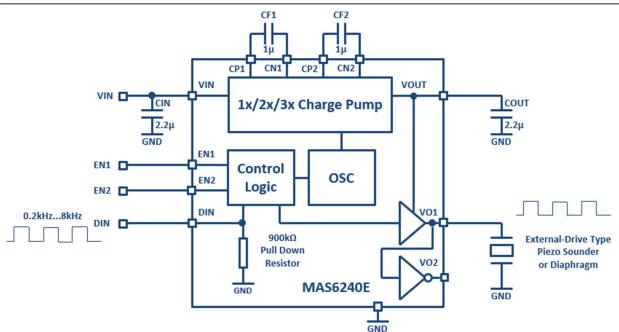



Figure 1. Charge Pump + Single End Piezo Driver (max 9Vpp @ VIN=3V)

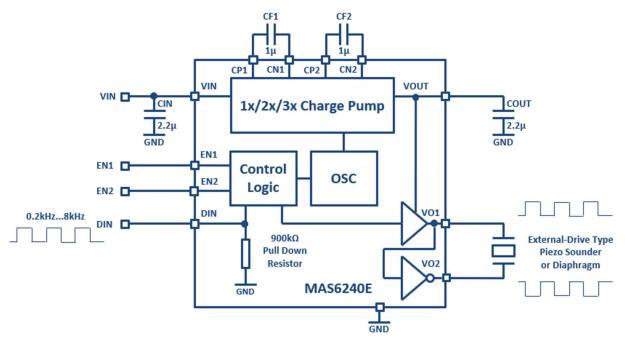



Figure 2. Charge Pump + Differential Piezo Driver (max 18Vpp @ VIN=3V)

The input (CIN), flying (CF1, CF2) and output (COUT) capacitor value selections affect output ripple and inrush current drawn from input during start-up. See table 1 for selecting capacitor values at different applications. The lowest inrush current can be achieved at the configuration 3 when using additional  $10\Omega$  series resistor between supply voltage and VIN. All capacitors must be ceramic type with low ESR and meeting following minimum voltage ratings: min 6.3V for CIN and CF1-CF2 and min 16V for COUT (20V for 5.5V supply).



|   | Config. | CIN   | CF1-2 | COUT  | Application                                                                      |
|---|---------|-------|-------|-------|----------------------------------------------------------------------------------|
| ľ | 1       | 0.1µF | 0.1µF | 0.1µF | Minimum size layout (only MAS6240E1 recommended)                                 |
| Ī | 2       | 1µF   | 1µF   | 1µF   | Small size layout                                                                |
| Ī | 3       | 2.2µF | 1µF   | 2.2µF | Low output ripple application                                                    |
|   | 4       | 10µF  | 1µF   | 2.2µF | Coin cell operated device with low input & output ripple (MAS6240E2 recommended) |

 Table 1. Capacitor value selection configurations at different applications

The voltage ripple at VOUT output is approximately proportional to ratio of piezo load capacitance and charge pump output capacitor (COUT). Thus, the output ripple can be reduced by choosing COUT which is much larger relative to piezo capacitance value. However, the COUT should not be chosen too large since it lengthens output voltage rise time and increases inrush current drawn from input. For low inrush current the CIN should be made much larger than the COUT.

Table 2 presents charge pump boosting modes selected by control pins EN1 and EN2.

**Table 2.** Charge Pump boosting mode selection

| DIN | EN1 | EN2 | Charge Pump (VOUT voltage) |  |
|-----|-----|-----|----------------------------|--|
| 0   | -   | -   | OFF (~VIN)                 |  |
| 1   | 0   | 0   | OFF (~VIN)                 |  |
| 1   | 0   | 1   | 1x Mode (VIN)              |  |
| 1   | 1   | 0   | 2x Mode (2xVIN)            |  |
| 1   | 1   | 1   | 3x Mode (3xVIN)            |  |

Note: In above table pulsed signal at digital input DIN is taken as "1" if pulse low time is less than 5 ms!



### **APPLICATION INFORMATION – EXTERNAL PROTECTION**

When a mechanical or thermal shock is applied to the piezo sounder it can produce high surge voltage which may cause permanent damage to the IC. If in your application the device is expected to face such shocks, it is recommended to use external protection against this surge voltage.

External protection can be based either on Zener diodes or an external resistor ( $\sim 1 k\Omega ... 2 k\Omega$ ). See figures 3 and 4 illustrating Zener and resistor protection circuits in both differential and single-ended piezo driving configurations. The Zener diode protection is suited for applications requiring the highest sound pressure level (SPL) since it does not reduce achievable SPL. The resistor protection solution has the lowest cost but it has impact on SPL especially in case of piezo with a large capacitance.

When using Zener diode protection, the Zener voltage should be chosen high enough to not limit selected output voltage (VOUT) level but also not being too far away to provide the best protection. In case driving piezo sounder in 3x mode at maximum 3.3 supply voltage the output can be VOUT=9.9V a suitable choice for a nominal Zener voltage is for example 11V when taking account Zener voltage tolerances.



Figure 3. External Zener diode protection of piezo driver outputs

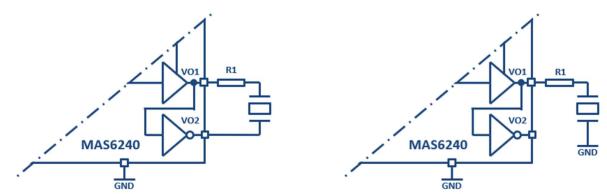



Figure 4. External resistor protection of piezo driver outputs



### **DETAILED DESCRIPTION**

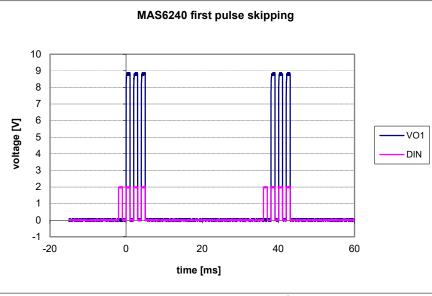



Figure 5. Enabling output VO1

The piezo driver is enabled at the second rising edge of the signal at DIN, thus the signal is transferred to the piezo output VO1. An inverted output VO2 is enabled at the same time, but it is optional to take it in use. Control logic is switching the charge pump on at first rising signal of digital input DIN pin. If only one rising edge is fed to the input DIN, the piezo driver remains disabled. The VO1 and VO2 outputs are at GND when the piezo driver is disabled.

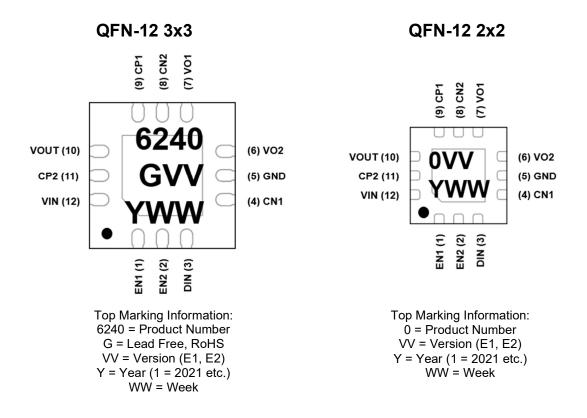



Figure 6. Disabling VO2

Figure 6 shows VO2 signal. The charge pump and piezo driver disable signal will be generated after the signal at DIN has been low at least for 25 ms. In the figure 6 the switch-off delay is about 16 ms. Again when new pulses are fed into DIN, the charge pump and piezo driver will be enabled.



**DEVICE OUTLINE CONFIGURATION** 

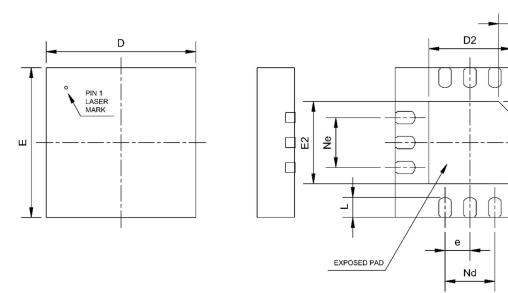


### QFN-12 2x2x0.5, QFN-12 3x3x0.75 PIN DESCRIPTION

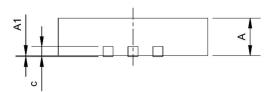
| Pin Name | Pin | Туре | Function                             | Note |
|----------|-----|------|--------------------------------------|------|
| EN1      | 1   | DI   | Charge pump mode selection input 1   |      |
| EN2      | 2   | DI   | Charge pump mode selection input 2   |      |
| DIN      | 3   | DI   | Enable signal + Digital signal input |      |
| CN1      | 4   | AI/O | Flying capacitor 1 negative terminal |      |
| GND      | 5   | G    | Supply ground                        |      |
| VO2      | 6   | DO   | Digital audio signal output 2        |      |
| VO1      | 7   | DO   | Digital audio signal output 1        |      |
| CN2      | 8   | AI/O | Flying capacitor 2 negative terminal |      |
| CP1      | 9   | AI/O | Flying capacitor 1 positive terminal |      |
| VOUT     | 10  | AO   | Charge pump output                   |      |
| CP2      | 11  | AI/O | Flying capacitor 2 positive terminal |      |
| VIN      | 12  | Р    | Power supply                         |      |
| EXP_PAD  | -   | Р    | Exposed pad connected to GND         | 1    |

G = Ground, P = Power, D = Digital, A = Analog, I = Input, O = Output

Note1: On PCB the exposed can be either connected to GND or left floating.




F


q

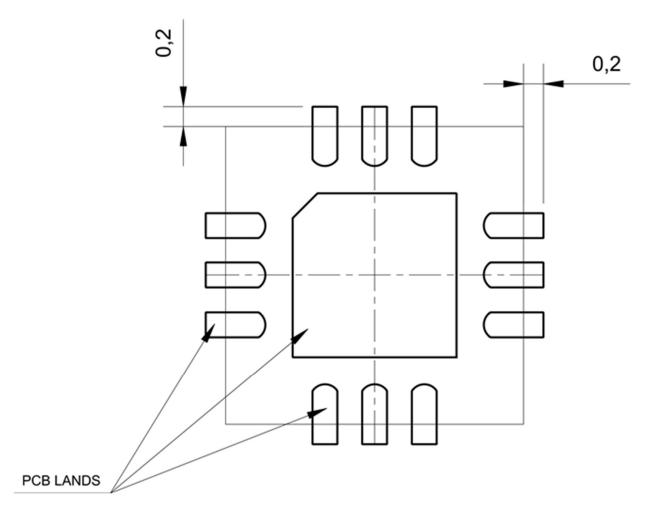
h

# PACKAGE (QFN-12 2x2x0.5) OUTLINE



BOTTOM VIEW



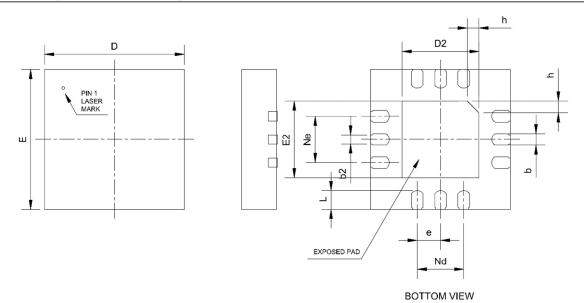

Note: Package drawing is only referential but table dimensions are accurate.

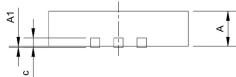
| Symbol             | Min  | Nom      | Мах  | Unit |  |  |  |
|--------------------|------|----------|------|------|--|--|--|
| PACKAGE DIMENSIONS |      |          |      |      |  |  |  |
| A                  | 0.45 | 0.5      | 0.55 | mm   |  |  |  |
| A1                 | 0    | 0.02     | 0.05 | mm   |  |  |  |
| b                  | 0.15 | 0.20     | 0.25 | mm   |  |  |  |
| С                  | 0.10 | 0.15     | 0.20 | mm   |  |  |  |
| D                  | 1.90 | 2.00     | 2.10 | mm   |  |  |  |
| D2 (Exposed.pad)   | 1.00 | 1.10     | 1.20 | mm   |  |  |  |
| е                  |      | 0.40 BSC |      | mm   |  |  |  |
| Ne                 |      | 0.80 BSC |      | mm   |  |  |  |
| Nd                 |      | 0.80 BSC |      | mm   |  |  |  |
| E                  | 1.90 | 2.00     | 2.10 | mm   |  |  |  |
| E2 (Exposed.pad)   | 1.00 | 1.10     | 1.20 | mm   |  |  |  |
| L                  | 0.15 | 0.20     | 0.25 | mm   |  |  |  |
| h                  | 0.15 | 0.20     | 0.25 | mm   |  |  |  |

Dimensions do not include mold or interlead flash, protrusions or gate burrs.



# QFN-12 2x2x0.5 PCB LAND PATTERN





### Notes

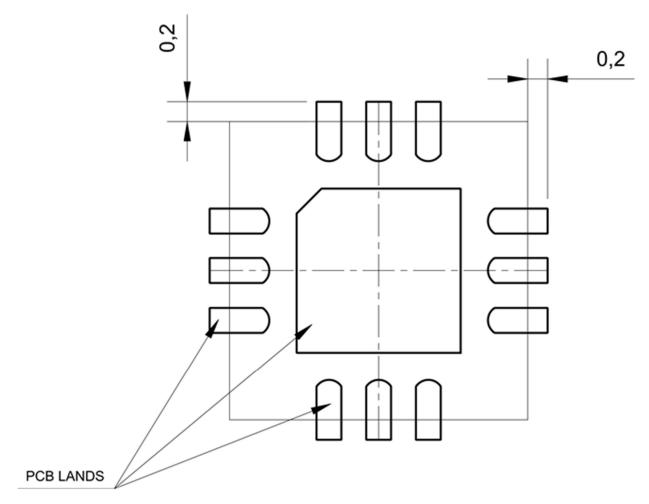
- I/O lands should be 0.2mm longer than QFN pads and extend the same 0.2mm outside package outline
- exposed pad land size should be the same as QFN exposed pad size
- solder resist opening should be 120μm...150μm larger than the land size resulting in 60μm...75μm clearance between copper land and solder resist



# PACKAGE (QFN-12 3x3x0.75) OUTLINE






Note: Package drawing is only referential but table dimensions are accurate.

| Symbol           | Min                | Nom      | Мах  | Unit |  |  |  |  |
|------------------|--------------------|----------|------|------|--|--|--|--|
|                  | PACKAGE DIMENSIONS |          |      |      |  |  |  |  |
| A                | 0.70               | 0.75     | 0.80 | mm   |  |  |  |  |
| A1               |                    | 0.02     | 0.05 | mm   |  |  |  |  |
| b                | 0.20               | 0.25     | 0.30 | mm   |  |  |  |  |
| b2               | 0.15               | 0.20     | 0.25 | mm   |  |  |  |  |
| с                | 0.18               | 0.20     | 0.25 | mm   |  |  |  |  |
| D                | 2.90               | 3.00     | 3.10 | mm   |  |  |  |  |
| D2 (Exposed.pad) | 1.55               | 1.65     | 1.75 | mm   |  |  |  |  |
| е                |                    | 0.50 BSC |      | mm   |  |  |  |  |
| Ne               |                    | 1.00 BSC |      | mm   |  |  |  |  |
| Nd               |                    | 1.00 BSC |      | mm   |  |  |  |  |
| E                | 2.90               | 3.00     | 3.10 | mm   |  |  |  |  |
| E2 (Exposed.pad) | 1.55               | 1.65     | 1.75 | mm   |  |  |  |  |
| L                | 0.35               | 0.40     | 0.45 | mm   |  |  |  |  |
| h                | 0.20               | 0.25     | 0.30 | mm   |  |  |  |  |

Dimensions do not include mold or interlead flash, protrusions or gate burrs.

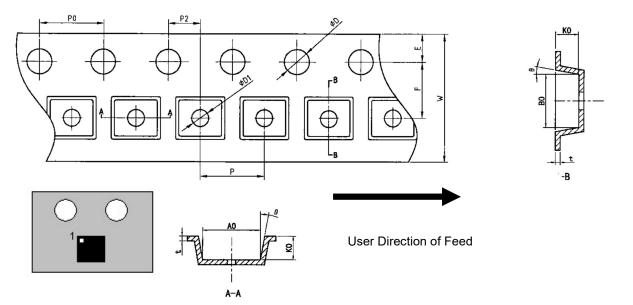


# QFN-12 3x3x0.75 PCB LAND PATTERN



#### Notes

- I/O lands should be 0.2mm longer than QFN pads and extend the same 0.2mm outside package outline
- exposed pad land size should be the same as QFN exposed pad size
- solder resist opening should be 120μm...150μm larger than the land size resulting in 60μm...75μm clearance between copper land and solder resist



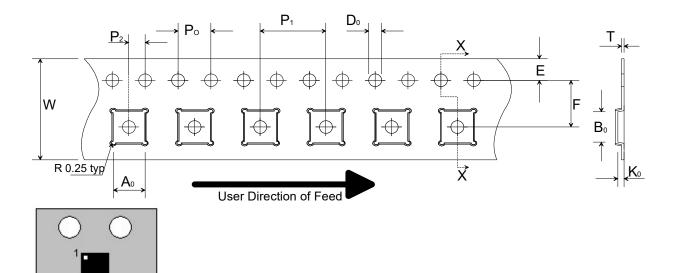

# SOLDERING INFORMATION

### For Lead-Free / Green QFN 2mm x 2mm x 0.5mm and 3mm x 3mm x 0.75mm

| Resistance to Soldering Heat     | According to RSH test IEC 68-2-58/20                     |
|----------------------------------|----------------------------------------------------------|
| Maximum Temperature              | 260°C                                                    |
| Maximum Number of Reflow Cycles  | 3                                                        |
| Reflow profile                   | Thermal profile parameters stated in IPC/JEDEC J-STD-020 |
|                                  | should not be exceeded. http://www.jedec.org             |
| Lead Finish                      | 7.62 - 25.4 µm, Matte Tin                                |
| Moisture Sensitivity Level (MSL) | 1 (per J-STD-020)                                        |

# QFN 2x2x0.5 EMBOSSED TAPE SPECIFICATIONS




### Orientation on tape

| Dimension | Min/Max          | Unit |
|-----------|------------------|------|
| A0        | 2.13 ±0.05       | mm   |
| B0        | 2.13 ±0.05       | mm   |
| D         | 1.50 ±0.1        | mm   |
| D1        | 1.00 +0.25/-0.00 | mm   |
| E         | 1.75 ±0.10       | mm   |
| F         | 3.50 ±0.05       | mm   |
| K0        | 0.88 ±0.05       | mm   |
| P         | 4.00 ±0.10       | mm   |
| P0        | 4.00 ±0.10       | mm   |
| 10P0      | 40.00 ±0.20      | mm   |
| P2        | 2.00 ±0.05       | mm   |
| t         | 0.254 ±0.02      | mm   |
| W         | 8.00 +0.3/-0.1   | mm   |
| θ         | 5 MAX            | ٥    |

Reel Material: Conductive, Plastic Antistatic or Static Dissipative Carrier Tape Material: Conductive Cover Tape Material: Static Dissipative



# QFN 3x3x0.75 EMBOSSED TAPE SPECIFICATIONS



Orientation on tape

| Dimension | Min/Max        | Unit |
|-----------|----------------|------|
| Ao        | 3.30 ±0.10     | mm   |
| Bo        | 3.30 ±0.10     | mm   |
| Do        | 1.50 +0.1/-0.0 | mm   |
| E         | 1.75           | mm   |
| F         | 5.50 ±0.05     | mm   |
| Ко        | 1.10 ±0.10     | mm   |
| Po        | 4.0            | mm   |
| P1        | 8.0 ±0.10      | mm   |
| P2        | 2.0 ±0.05      | mm   |
| Т         | 0.3 ±0.05      | mm   |
| W         | 12.00 ±0.3     | mm   |

Reel Material: Conductive, Plastic Antistatic or Static Dissipative Carrier Tape Material: Conductive Cover Tape Material: Static Dissipative



### **ORDERING INFORMATION**

| Product Code                     | Product      | Package                                         | Comments                           |
|----------------------------------|--------------|-------------------------------------------------|------------------------------------|
| MAS6240E1Q2106<br>MAS6240E2Q2106 | Piezo Driver | QFN 2x2x0.5 12 lead, REACH & RoHS Compliant     | Ø7" Tape and Reel<br>3000 pcs / r  |
| MAS6240E1Q1306<br>MAS6240E2Q1306 | Piezo Driver | QFN 3x3x0.75 12 lead, REACH &<br>RoHS Compliant | Ø13" Tape and Reel<br>5000 pcs / r |
| MAS6240E1Q1309<br>MAS6240E2Q1309 | Piezo Driver | QFN 3x3x0.75 12 lead, REACH & RoHS Compliant    | Tape 500 pcs                       |
| MAS6240E1WA300<br>MAS6240E2WA300 | Piezo Driver | EWS Tested 8" wafers,<br>thickness 406 µm ± 5%  |                                    |
| MAS6240E1WA305<br>MAS6240E2WA305 | Piezo Driver | Dies in waffle pack,<br>thickness 406 µm ± 5%   |                                    |

### The formation of product code

#### An example for MAS6240E1Q1306:

| MAS6240      | E1                   | Q13                    | 06                 |
|--------------|----------------------|------------------------|--------------------|
| Product name | Product Version:     | Package:               | Delivery format:   |
|              | E1: Fosc = 1 MHz     | Q13 = QFN 3 x 3 x 0.75 | 00 = Tested Wafer  |
|              | E2: Fosc = 0.125 MHz | Q21 = QFN 2 x 2 x 0.5  | 05 = Tested Dies   |
|              |                      | WA3 = 406 µm thick EWS | 06 = Tape and Reel |
|              |                      | tested wafer           | 09 = Tape          |

### LOCAL DISTRIBUTOR

# **MICRO ANALOG SYSTEMS OY CONTACTS**

| Micro Analog Systems Oy    | Tel. +358 10 835 1100 |  |
|----------------------------|-----------------------|--|
| Kutomotie 16               |                       |  |
| FI-00380 Helsinki, FINLAND | http://www.mas-oy.com |  |

#### NOTICE

Micro Analog Systems Oy (MAS) reserves the right to make changes to the products contained in this data sheet in order to improve the design or performance and to supply the best possible products. MAS assumes no responsibility for the use of any circuits shown in this data sheet, conveys no license under any patent or other rights unless otherwise specified in this data sheet, and makes no claim that the circuits are free from patent infringement. Applications for any devices shown in this data sheet are for illustration only and MAS makes no claim or warranty that such applications will be suitable for the use specified without further testing or modification.

MAS products are not authorized for use in safety-critical applications (such as life support) where a failure of the MAS product would reasonably be expected to cause severe personal injury or death. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of MAS products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by MAS. Further, Buyers must fully indemnify MAS and its representatives against any damages arising out of the use of MAS products in such safety-critical applications.

MAS products are neither designed nor intended for use in military/aerospace applications or environments. Buyers acknowledge and agree that any such use of MAS products which MAS has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

MAS products are neither designed nor intended for use in automotive applications or environments. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, MAS will not be responsible for any failure to meet such requirements.